5.8 TRAFFIC, ACCESS, AND CIRCULATION

This section describes existing traffic conditions in the project area; summarizes applicable regulations; and analyzes the potential traffic, access, and circulation impacts of the proposed project. Information in this section is summarized from the Traffic Study (Appendix L).

The proposed project would require the use of highways and local roadways in the study area vicinity for transportation of materials/equipment into and out of the project site and to accommodate worker trips during construction. Excavated material and excess sediment removed from the W-19 site would be transported to the disposal location using off-road haul routes. Upon completion of the project, generation of additional traffic on roadways within the study area would be limited to intermittent maintenance activities and recreational trail access. Because the proposed project is a restoration project and would not result in substantial operational impacts, this analysis focuses on construction and maintenance traffic impacts associated with restoration and material disposal activities.

5.8.1 EXISTING CONDITIONS

Effective evaluation of the traffic impacts associated with the project requires an understanding of the existing transportation system within the project study area. The existing traffic conditions for arterials and freeways within the study area are shown in Table 5.8-1 and Table 5.8-2, respectively, and are described further in the Traffic Study. Potential impacts to bicyclists were evaluated along El Camino Real between San Dieguito Road and Del Mar Heights Road, which is a four-lane roadway with dedicated bicycle lanes along both sides of the roadway.

Table 5.8-1
Existing Traffic Conditions for Arterial Segments along Construction Access Route

<table>
<thead>
<tr>
<th>Roadway</th>
<th>Segment</th>
<th>Approximate Distance (miles)</th>
<th>Daily Volume</th>
<th>Peak Hour Volume</th>
<th>Peak Hour Two-way Capacity</th>
<th>Existing Peak Hour V/C</th>
<th>Designated Existing LOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northern Route to I-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>El Camino Real</td>
<td>San Dieguito Road to Via de la Valle</td>
<td>0.5</td>
<td>14,524</td>
<td>1,615</td>
<td>1,600</td>
<td>1.01</td>
<td>F</td>
</tr>
<tr>
<td>Via de la Valle</td>
<td>El Camino Real to I-5</td>
<td>1.4</td>
<td>20,666</td>
<td>1,737</td>
<td>1,600/3,200</td>
<td>1.08/0.54</td>
<td>F/A</td>
</tr>
<tr>
<td>Southern Route to I-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>El Camino Real</td>
<td>San Dieguito Road to Del Mar Heights Road</td>
<td>2.0</td>
<td>15,326</td>
<td>1,756</td>
<td>3,200</td>
<td>0.55</td>
<td>A</td>
</tr>
<tr>
<td>Del Mar Heights Road</td>
<td>El Camino Read to I-5</td>
<td>0.6</td>
<td>39,188</td>
<td>3,202</td>
<td>4,800</td>
<td>0.67</td>
<td>B</td>
</tr>
</tbody>
</table>

LOS = level of service; V/C = volume to capacity ratio
1 Assumed capacity per lane per hour for arterial roadways = 800 (to account for traffic signal and associated red time).
2 Via de la Valle is a two-lane roadway between El Camino Real and the signalized intersection at San Andres Drive. Between San Andres Drive and I-5, Via de la Valle is a four-lane roadway. XX/YY values shown in the table correspond to two-lane/four-lane conditions along Via de la Valle.
Table 5.8-2
Existing Traffic Conditions for Freeway Segments within Study Area

<table>
<thead>
<tr>
<th>Freeway (South of Project Site)</th>
<th>Segment</th>
<th>Approximate Distance (miles)</th>
<th>Daily Volume</th>
<th>Peak Hour Volume</th>
<th>Peak Hour Two-way Capacity</th>
<th>Existing Peak Hour V/C</th>
<th>Designated Existing LOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-5</td>
<td>Via de la Valle to Del Mar Heights Road</td>
<td>5.8</td>
<td>243,000</td>
<td>15,900</td>
<td>15,120</td>
<td>1.05</td>
<td>F</td>
</tr>
<tr>
<td>I-5 South of I-5/I-805 Merge (Sorrento Valley Road)</td>
<td>245,000</td>
<td>16,200</td>
<td>18,000</td>
<td>0.90</td>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-805 South of I-5/I-805 Merge (Miramar Road)</td>
<td>204,000</td>
<td>15,600</td>
<td>18,000</td>
<td>0.87</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-5 (North of Project Site)</td>
<td>Del Mar Heights Road to Via de la Valle</td>
<td>3.3</td>
<td>165,000</td>
<td>11,800</td>
<td>11,520</td>
<td>1.02</td>
<td>F</td>
</tr>
<tr>
<td>Via de la Valle to Loma Santa Fe Drive</td>
<td>184,000</td>
<td>13,700</td>
<td>12,240</td>
<td>1.12</td>
<td>F</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Appendix L
LOS = level of service; V/C = volume to capacity ratio
Assumed capacity per lane per hour for freeway = 1,800.
Assumed capacity per lane per hour for HOV lane = 450 (0.25 of freeway lane capacity).
Capacity adjustment on the freeway to account for directional bias = 0.80.
Existing LOS reported in the table is based on peak direction on the freeway.

Level of service (LOS) is the term used to denote the different operating conditions that occur on a given roadway segment under various traffic volume loads. It is a qualitative measure with designations ranging from A through F. In traffic engineering methodology, roadway operations are rated in terms of LOS that range from LOS A (light traffic, minimal delays) to LOS F (traffic congestion, substantial delays). LOS D is the typical standard for urban and suburban design. The results shown in Table 5.8-1 and Table 5.8-2 indicate that, under existing conditions, two arterial segments and several of the freeway segments operate near or at capacity (designated LOS F) during the peak hours.

5.8.2 IMPACT THRESHOLDS

A significant impact related to traffic, access, and circulation would occur if implementation of the proposed project would:

A. Result in traffic generation in excess of specific community plan allocation;
B. Result in an increase in projected traffic which is substantial in relation to the existing traffic load and capacity of the street system;
C. Result in addition of a substantial amount of traffic to a congested freeway segment, interchange, or ramp as shown in Table 5.8-3;
D. Result in an increased demand for offsite parking;
E. Result in effects on existing parking;
F. Result in substantial impact upon existing or planned transportation systems;
G. Result in substantial alterations to present circulation movements including effects on existing public access to beaches, parks, or other open space areas;
H. Increase traffic hazards for motor vehicles, bicyclists, or pedestrians due to a proposed, non-standard design feature (e.g., poor sight distance or driveway onto an access-restricted roadway); or
I. Conflict with adopted policies, plans, or programs supporting alternative transportation models (e.g., bus turnouts, bicycle racks).

The CEQA impact thresholds for traffic are those recommended by the City of San Diego Development Services Department, including the LOS thresholds provided in Table 5.8-3.

Table 5.8-3
Traffic Impact Significance Thresholds

<table>
<thead>
<tr>
<th>Level of Service with Project</th>
<th>Freeways</th>
<th>Roadway Segments</th>
<th>Intersections</th>
<th>Ramp Metering</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V/C</td>
<td>Speed (mph)</td>
<td>V/C</td>
<td>Speed (mph)</td>
</tr>
<tr>
<td>E (or ramp meter delays above 15 min.)</td>
<td>0.010</td>
<td>1.0</td>
<td>0.02</td>
<td>1.0</td>
</tr>
<tr>
<td>F (or ramp meter delays above 15 min.)</td>
<td>0.005</td>
<td>0.5</td>
<td>0.01</td>
<td>0.5</td>
</tr>
</tbody>
</table>

min. = minutes; mph = miles per hour; sec. = seconds; V/C = volume to capacity ratio

Delay = Average stopped delay per vehicle measured in seconds for intersections, or minutes for ramp meters

1. All LOS measurements are based on Highway Capacity Manual procedures for peak hour conditions. However, V/C ratios for roadway segments may be estimated on an average daily traffic/24-hour traffic volume basis (using this table or a similar LOS chart for each jurisdiction). The acceptable LOS for freeways, roadways, and intersections is generally “D” (“C” for undeveloped or not densely developed locations per jurisdiction definitions). For metered freeway ramps, LOS does not apply. However, ramp meter delays above 15 minutes are considered excessive.

2. If a proposed project’s traffic causes the values shown in the table to be exceeded, the impacts are deemed significant. These impact changes may be measured from appropriate computer programs or expanded manual spreadsheets.

Source: California Environmental Quality Act Significance Determination Thresholds, City of San Diego Development Services Department, January 2011

5.8.3 IMPACT ANALYSIS

Traffic generated during the construction of the proposed project would consist of employee/worker trips; trips associated with shipment of equipment/support supplies for grading, drainage improvements, rock slope protection, trail extension; and trips associated with disposal of materials excavated during lagoon restoration and maintenance. Permanent impacts would not occur because there would not be continued operational traffic needs, and are not discussed in this section.

W-19 Restoration/Materials Disposal

The habitat restoration activities of the proposed project would include excavation and disposal of approximately 1.3 mcy of material using 25-cy capacity articulated trucks. Excavated
vegetation and excess sediment removed from the project site would be transported via internal roads (i.e., offroad) to the disposal site south of the W-19 site. The haul route between W-19 and the disposal site would avoid the need for trucks to travel through existing neighborhoods; therefore, disposal of excavated material would not create truck trips on the public road network. As a result, traffic generation during construction on the public road network would be limited to employee/worker trips and trips associated with transport of equipment/support supplies. As described in Table 3-2, Standard Construction Practices, a Traffic Management Plan would be prepared prior to the initiation of construction. This plan would avoid and minimize traffic impacts, including approaches such as scaling back construction activities during peak travel periods.

Whenever truck traffic is a substantial portion of project traffic, it is common transportation engineering practice to use passenger car equivalents (PCEs) to estimate the impacts of combined auto and truck traffic. Calculations in the traffic study assumed that each truck was considered the equivalent of 2.725 passenger cars.

Table 5.8-4 summarizes two sets of trip generation estimates: baseline trip generation, which would occur throughout the 2-year construction period, and additional trips that would occur during an intensive 3-month phase. During the majority of project construction, peak hour trip generation would be approximately 41 one-way trips (PCEs) during both the morning and afternoon peak hour periods. Total trip generation per 10-hour construction day would be approximately 269 PCEs. During the intensive 3-month period, which would include drainage improvements, trail construction, and slope protection, construction would result in an additional 55 PCEs for a total potential trip generation of 85 PCEs during the peak hours. During this phase, delivery of materials to the site would result in approximately 440 PCEs over the course of the day, increasing the total daily trip generation to approximately 705.

Table 5.8-4

<table>
<thead>
<tr>
<th>Proposed Project – Peak Hour Trip Generation Characteristics in PCEs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Throughout Construction (2 years)</td>
</tr>
<tr>
<td>Employee/Worker Trips</td>
</tr>
<tr>
<td>Material Disposal Hauling Trips</td>
</tr>
<tr>
<td>Additional Vehicle Trips</td>
</tr>
<tr>
<td>Additional Truck Trips</td>
</tr>
<tr>
<td>Subtotal - Throughout Construction</td>
</tr>
<tr>
<td>During Drainage Improvements, Trail Construction, and Slope Protection (3 months)</td>
</tr>
<tr>
<td>Additional Truck Trips (drainage improvements, trail construction and slope protection)</td>
</tr>
<tr>
<td>Subtotal - Drainage Improvements, Trail Construction, and Slope Protection</td>
</tr>
<tr>
<td>Maximum Total Peak Hour Trips (PCEs)</td>
</tr>
</tbody>
</table>

PCE = passenger car equivalent

1 Disposal location would be accessed using non-public roadways. As a result, material disposal activity would not generate trips on public road network.

The haul route to the disposal site would not include public roadways and so removal of the excavated material would not generate trips on the public road network. As described in Table 5.8-4, the project’s traffic impacts are dependent on the phase of construction occurring, but would not exceed a worst-case scenario of 85 peak hour trips during the most intensive phase of
construction. Traffic generated is temporary and would not exceed community plan allocations, and impacts would be less than significant (Criterion A).

Between the peak commute hours of 7 a.m. to 9 a.m. and 4 p.m. and 6 p.m., approximately 41 PCEs would be added by the proposed project during the majority of the 2-year construction period. For 3 months of the construction period, the added traffic would increase to 85 PCEs during the peak commute hours. This projected traffic increase is substantial in relation to the existing traffic load and capacity of the street system as the volume to capacity (V/C) ratios would increase by 0.05 as shown in Table 5.8-5, which exceeds the impact threshold. Traffic routed over the two-lane section of Via de la Valle and El Camino Real north of the site would exceed the existing roadway capacity during the 3-month intensive construction period and impacts would be significant (Criterion B).

Freeway segments within the study area currently operate at poor levels in peak directions during peak hours. This analysis assumed that all construction trips use the poor LOS sections of I-5 or Interstate 805 (I-805) south of the merge within the same time period. In the interest of a conservative analysis, traffic impacts to these freeway segments were analyzed using the maximum trip generation value of 85 PCEs. Impacts of this level of trip generation along the haul route are shown in Tables 5.8-5 and 5.8-6. Addition of the 85 PCEs would increase the V/C ratios by 0.005 or 0.007 on many of the freeway segments currently operating at LOS F. Therefore, impacts would be significant during the 3-month intensive construction period (Criterion C).

There are two parking lots available to serve the San Dieguito River Park in the lagoon area. The Dust Devil Nature Trail parking lot can accommodate approximately 25 vehicles and the parking lot off San Andres Drive can accommodate approximately 60 vehicles. Parking utilization at the Dust Devil Nature Trail lot on a typical day is much lower than its current capacity (generally fewer than four vehicles). Construction parking would be accommodated on a temporary site adjacent to the Dust Devil Nature Trail parking lot, to house a construction trailer and approximately 32 vehicles (Figure 3-8). The project site would have ample space to accommodate parking and truck staging for material hauling and no increase in demand for offsite parking would occur. Following the completion of construction, the proposed trail extension would likely increase parking demand. However, the existing parking lots are anticipated to be sufficient to accommodate the typical daily parking demand. The project would result in no changes to existing parking and an impact would not occur (Criteria D and E).

Traffic generated during construction at the restoration site would be temporary and therefore would not result in a substantial impact on existing or planned transportation systems, and would not require substantial alterations to present public circulation, including routes to the beach or other open spaces. An impact would not occur (Criteria F and G).

The project would not create a non-standard design feature nor involve any roadway improvements. Therefore, an impact related to traffic hazards for motor vehicles, bicyclists, or pedestrians would not occur (Criterion H).
Table 5.8-5
Traffic Impacts from 85 PCEs: Arterial Segments

<table>
<thead>
<tr>
<th>Roadway</th>
<th>Segment</th>
<th>Approximate Distance (miles)</th>
<th>Daily Volume</th>
<th>Peak Hour Volume</th>
<th>Peak Hour Two-way Capacity</th>
<th>Existing Peak Hour V/C</th>
<th>Designated Existing LOS</th>
<th>Change in V/C due to Project Impact</th>
<th>Exceed Threshold for Roadway Segments?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northern Route to I-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>El Camino Real</td>
<td>San Dieguito Road to Via de la Valle</td>
<td>0.5</td>
<td>14,524</td>
<td>1,615</td>
<td>1,600</td>
<td>1.01</td>
<td>F</td>
<td>.05</td>
<td>Yes</td>
</tr>
<tr>
<td>Via de la Valle</td>
<td>El Camino Real to I-5</td>
<td>1.4</td>
<td>20,666</td>
<td>1,737</td>
<td>1,600/3,200</td>
<td>1.08/0.54</td>
<td>F/A</td>
<td>.05/.03</td>
<td>Yes</td>
</tr>
<tr>
<td>Southern Route to I-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>El Camino Real</td>
<td>San Dieguito Road to Del Mar Heights Road</td>
<td>2.0</td>
<td>15,326</td>
<td>1,756</td>
<td>3,200</td>
<td>0.55</td>
<td>A</td>
<td>.03</td>
<td>No</td>
</tr>
<tr>
<td>Del Mar Heights Road</td>
<td>El Camino Real to I-5</td>
<td>0.6</td>
<td>39,188</td>
<td>3,202</td>
<td>4,800</td>
<td>0.67</td>
<td>B</td>
<td>.03</td>
<td>No</td>
</tr>
</tbody>
</table>

LOS = level of service; V/C = volume to capacity ratio
Table 5.8-6
Traffic Impacts from 85 PCEs: Freeway Segments

<table>
<thead>
<tr>
<th>Freeway</th>
<th>Segment</th>
<th>Approximate Distance (miles)</th>
<th>Daily Volume</th>
<th>Peak Hour Volume</th>
<th>Peak Hour Two-way Capacity</th>
<th>Existing Peak Hour V/C</th>
<th>Designated Existing LOS</th>
<th>Change in V/C due to Project Impact</th>
<th>Exceed Threshold for Freeways</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-5 (South of Project Site)</td>
<td></td>
<td></td>
<td>5.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-5 (South of Project Site)</td>
<td>Via de la Valle to Del Mar Heights Road</td>
<td></td>
<td>243,000</td>
<td>15,900</td>
<td>15,120</td>
<td>1.05</td>
<td>F</td>
<td>0.006</td>
<td>Yes</td>
</tr>
<tr>
<td>I-5 (South of Project Site)</td>
<td>Del Mar Heights Road to SR-56</td>
<td></td>
<td>245,000</td>
<td>16,200</td>
<td>18,000</td>
<td>0.90</td>
<td>D</td>
<td>0.005</td>
<td>N/A</td>
</tr>
<tr>
<td>I-5 (South of Project Site)</td>
<td>SR-56 to I-805</td>
<td></td>
<td>204,000</td>
<td>15,600</td>
<td>18,000</td>
<td>0.87</td>
<td>C</td>
<td>0.005</td>
<td>N/A</td>
</tr>
<tr>
<td>I-5 (South of Project Site)</td>
<td>I-5 South of I-5/I-805 Merge (Sorrento Valley Road)</td>
<td></td>
<td>165,000</td>
<td>11,800</td>
<td>11,520</td>
<td>1.02</td>
<td>F</td>
<td>0.007</td>
<td>Yes</td>
</tr>
<tr>
<td>I-5 (South of Project Site)</td>
<td>I-805 South of I-5/I-805 Merge (Miramar Road)</td>
<td></td>
<td>184,000</td>
<td>13,700</td>
<td>12,240</td>
<td>1.12</td>
<td>F</td>
<td>0.007</td>
<td>Yes</td>
</tr>
<tr>
<td>I-5 (North of Project Site)</td>
<td>Del Mar Heights Road to Via de la Valle</td>
<td></td>
<td>3.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-5 (North of Project Site)</td>
<td>Via de la Valle to Loma Santa Fe Drive</td>
<td></td>
<td>243,000</td>
<td>15,900</td>
<td>15,120</td>
<td>1.05</td>
<td>F</td>
<td>0.006</td>
<td>Yes</td>
</tr>
<tr>
<td>I-5 (North of Project Site)</td>
<td></td>
<td></td>
<td>247,000</td>
<td>18,100</td>
<td>15,120</td>
<td>1.20</td>
<td>F</td>
<td>0.006</td>
<td>Yes</td>
</tr>
</tbody>
</table>

LOS = level of service; N/A = not applicable; V/C = volume to capacity ratio
The restoration project would not involve any roadway improvements. **Temporary construction traffic would not conflict with adopted policies, plans, or programs supporting alternative transportation modes such as bicycle or pedestrian facilities, and an impact would not occur (Criterion I).**

W-19 Wetlands Maintenance

As described in Chapter 3, the proposed project would involve maintenance at both the lagoon inlets and portions of the lagoon interior following large storms. Information regarding truck trips anticipated for each storm event is consolidated in Table 5.8-7.

Table 5.8-7

Inlet Maintenance Trip Generation

<table>
<thead>
<tr>
<th>Storm Frequency</th>
<th>Maintenance Volume (cy)</th>
<th>Truck Round Trips (8 cy/trip)</th>
<th>Duration (working days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inlet Maintenance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25-year</td>
<td>5,000</td>
<td>625</td>
<td>13</td>
</tr>
<tr>
<td>50-year</td>
<td>20,000</td>
<td>2,500</td>
<td>43</td>
</tr>
<tr>
<td>100-year</td>
<td>15,000</td>
<td>1,875</td>
<td>33</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Storm Frequency</th>
<th>Maintenance Volume (cy)</th>
<th>Truck Round Trips (8 cy/trip)</th>
<th>Duration (working days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adaptive Maintenance in Wetland Interior</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50-year</td>
<td>10,000</td>
<td>1,250</td>
<td>23</td>
</tr>
<tr>
<td>100-year</td>
<td>45,000</td>
<td>5,625</td>
<td>93</td>
</tr>
</tbody>
</table>

cy = cubic yards, cy/trip = cubic yards per trip

As shown in this table, traffic generated by maintenance activities following major storm events would be substantial. As shown in Figure 3-10, trucks would travel along El Camino Real north to Via de la Valle, west on Via de la Valle to Camino Del Mar, and then south along Camino Del Mar to beach access points either north of the river for access to Dog Beach or south of the river at the ends of 20th and/or 18th Streets. Therefore, traffic impacts associated with these activities would be limited to surface streets. Additionally, these impacts would only be anticipated to occur a few times over the 50-year life of the project, as they would require a 25-year storm or greater to occur. Table 5.8-8 shows the peak hour trip generation that would occur as a result of sediment maintenance activities.

Table 5.8-8

Maintenance Peak Hour Trip Generation (in PCEs)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Employee/Worker Trips</td>
<td>10</td>
</tr>
<tr>
<td>Sediment Disposal Hauling Trips*</td>
<td>33</td>
</tr>
<tr>
<td>Additional Vehicle Trips</td>
<td>5</td>
</tr>
<tr>
<td>Total Peak Hour Trips</td>
<td>48</td>
</tr>
</tbody>
</table>

PCE = passenger car equivalent

Six truck round-trips per hour x 2.725 (conversion factor for trucks) = 33 PCEs (one-way)

Because transportation of removed sediment along the route described above requires utilizing the congested two-lane segments of El Camino Real and Via de la Valle, wetlands maintenance would result in a significant impact related to local roadways (Criterion B).
The addition of six truck round-trips per hour would not result in traffic in excess of community plan allocation, and impacts would be less than significant (Criterion A).

Beach placement would also temporarily restrict access to certain portions of the beach actively experiencing sediment placement. Adjacent portions of the beach would be available for recreational use, and lateral access would be maintained as described in Section 5.1. Therefore, impacts related to circulation movement and public access would be less than significant (Criterion G). Maintenance activities would not impact freeways, parking, transportation systems, traffic hazards, or alternative transportation models (Criteria C, D, E, F, H, and I).

5.8.4 SIGNIFICANCE OF IMPACTS

Table 5.8-9 summarizes impact conclusions on traffic, access, and circulation impacts associated with the proposed project, for both construction and intermittent maintenance.

<table>
<thead>
<tr>
<th>Threshold</th>
<th>Impact Type</th>
<th>W-19 Restoration/ Materials Disposal</th>
<th>W-19 Maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Result in traffic generation in excess of specific community plan allocation.</td>
<td>Temporary</td>
<td>Less than Significant</td>
<td>Less than Significant</td>
</tr>
<tr>
<td>B. Result in an increase in projected traffic which is substantial in relation to the existing traffic load and capacity of the street system.</td>
<td>Temporary</td>
<td>Significant</td>
<td>Significant</td>
</tr>
<tr>
<td>C. Result in addition of a substantial amount of traffic to a congested freeway segment, interchange, or ramp as shown in Table 5.8-3.</td>
<td>Temporary</td>
<td>Significant</td>
<td>No Impact</td>
</tr>
<tr>
<td>D. Result in an increased demand for offsite parking.</td>
<td>Temporary</td>
<td>No Impact</td>
<td>No Impact</td>
</tr>
<tr>
<td>E. Result in effects on existing parking.</td>
<td>Temporary</td>
<td>No Impact</td>
<td>No Impact</td>
</tr>
<tr>
<td>F. Result in substantial impact upon existing or planned transportation systems.</td>
<td>Temporary</td>
<td>No Impact</td>
<td>No Impact</td>
</tr>
<tr>
<td>G. Result in substantial alterations to present circulation movements including effects on existing public access to beaches, parks, or other open space areas.</td>
<td>Temporary</td>
<td>No Impact</td>
<td>Less than Significant</td>
</tr>
<tr>
<td>H. Increase traffic hazards for motor vehicles, bicyclists, or pedestrians due to a proposed, non-standard design feature (e.g., poor sight distance or driveway onto an access-restricted roadway).</td>
<td>Temporary</td>
<td>No Impact</td>
<td>No Impact</td>
</tr>
<tr>
<td>I. Conflict with adopted policies, plans, or programs supporting alternative transportation models (e.g., bus turnouts, bicycle racks).</td>
<td>Temporary</td>
<td>No Impact</td>
<td>No Impact</td>
</tr>
</tbody>
</table>
5.8.5 Mitigation Measures

Mitigation Measure Traffic-1 would be required to address significant impacts associated with additional truck trips traversing impacted roadway segments during initial project construction. The implementation of Traffic-1 would not reduce the traffic impact to below a level of significance, and the impact would remain significant and unavoidable.

Traffic-1

Provide advanced notification to motorists that delays and traffic congestion will occur at (a) freeway segments on I-5 and I-805, south of the merge; and (b) arterial roadway sections of Via de la Valle and El Camino Real during the construction period and encourage roadway users to consider other transportation modes or alternative routes during peak hours. This notification may be accomplished through various measures such as information and detour routes included on the project website; traffic details included in notifications sent to local residents; traffic and alternative route information published in local media; and physical traffic control measures, such as temporary signage located at various distances from the impacted areas.

Additional mitigation measures to reduce the traffic congestion on impacted roadway segments were considered, but none were found feasible to mitigate the temporary traffic impacts due to lagoon restoration activities. Many measures that would mitigate this impact would be permanent in nature, which would not be appropriate to correct a temporary impact that would be resolved once the proposed project work is complete. Similarly, measures were considered to reduce the traffic impact related to wetlands maintenance to less than significant, including alternative routes between the restoration site and the placement sites. However, the limited number of alternative roadways restrict the possibilities of alternative routes and because those alternate routes would be nearly twice as long and therefore would result in a marked increase in impacts related to air quality, greenhouse gas, and traffic, no mitigation measures were found to be feasible for maintenance-related traffic impacts.

Implementation of traffic-related standard construction practices and Mitigation Measure Traffic-1 would reduce traffic-related impacts. Because it is infeasible to predict the extent to which these measures would reduce traffic impacts, and because of the already-congested state of the roadways in question, temporary impacts related to increased construction traffic during initial project implementation would remain significant and unmitigable. Upon completion of lagoon restoration, these temporary traffic impacts would be eliminated and traffic operations would revert to their previous conditions, with the exception of maintenance activities following large storm events. These maintenance activities would be temporary and infrequent, but would result in a significant and unmitigable traffic impact while they occur.